Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Biochem Biophys Res Commun ; 646: 30-35, 2023 02 26.
Artigo em Inglês | MEDLINE | ID: mdl-36701892

RESUMO

In targeted protein degradation, immunomodulatory drugs (IMiDs) or cereblon (CRBN) E3 ligase modulatory drugs (CELMoDs) recruit neo-substrate proteins to the E3 ubiquitin ligase receptor CRBN for ubiquitination and subsequent proteasomal degradation. While the structural basis of this mechanism is generally understood, we have only recently described the recognition mode of the natural CRBN degron. In this communication, we reveal that the IMiD- or CELMoD-mediated binding of neo-substrates closely mimics the recognition of natural degrons. In crystal structures, we identify a conserved binding mode for natural degron peptides with an elaborate hydrogen bonding network involving the backbone of each of the six C-terminal degron residues, without the involvement of side chains. In a structural comparison, we show that neo-substrates recruited by IMiDs or CELMoDs emulate every single hydrogen bond of this network and thereby explain the origins of the largely sequence-independent recognition of neo-substrates. Our results imply that the V388I substitution in CRBN does not impair natural degron recognition and complete the structural basis for the rational design of CRBN effectors.


Assuntos
Agentes de Imunomodulação , Peptídeo Hidrolases , Peptídeo Hidrolases/metabolismo , Ubiquitinação , Ubiquitina-Proteína Ligases/metabolismo , Proteólise
2.
J Pept Sci ; 29(4): e3462, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36416071

RESUMO

Lysine acetylation is a posttranslational protein modification mediating protein-protein interactions by recruitment of bromodomains. Investigations of bromodomains have focused so far on the sequence context of the modification site and acyl-modifications installed at lysine side chains. In contrast, there is only little information about the impact of the lysine residue that carries the modification on bromodomain binding. Here, we report a synthesis strategy for L-acetyl-homolysine from L-2-aminosuberic acid by the Lossen rearrangement. Peptide probes containing acetylated homolysine, lysine, and ornithine were generated and used for probing the binding preferences of four bromodomains from three different families. Tested bromodomains showed distinct binding patterns, and one of them bound acetylated homolysine with similar efficiency as the native substrate containing acetyl-lysine. Deacetylation assays with a bacterial sirtuin showed a strong preference for acetylated lysine, despite a broad specificity for N-acyl modifications.


Assuntos
Lisina , Peptídeos , Humanos , Lisina/química , Acetilação , Peptídeos/metabolismo , Ligação Proteica , Processamento de Proteína Pós-Traducional
3.
Angew Chem Int Ed Engl ; 62(12): e202215460, 2023 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-36585954

RESUMO

Lysine acetylation is a charge-neutralizing post-translational modification of proteins bound by bromodomains (Brds). A 1,2,4-triazole amino acid (ApmTri) was established as acetyllysine (Kac) mimic recruiting Brds of the BET family in contrast to glutamine commonly used for simulating this modification. Optimization of triazole substituents and side chain spacing allowed BET Brd recruitment to ApmTri-containing peptides with affinities similar to native substrates. Crystal structures of ApmTri-containing peptides in complex with two BET Brds revealed the binding mode which mirrored that of Kac ligands. ApmTri was genetically encoded and recombinant ApmTri-containing proteins co-enriched BRD3(2) from cellular lysates. This interaction was blocked by BET inhibitor JQ1. With genetically encoded ApmTri, biochemistry is now provided with a stable Kac mimic reflecting charge neutralization and Brd recruitment, allowing new investigations into BET proteins in vitro and in vivo.


Assuntos
Aminoácidos , Triazóis , Domínios Proteicos , Peptídeos/química , Acetilação
4.
Biochem Biophys Res Commun ; 637: 66-72, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36375252

RESUMO

Cereblon (CRBN) is a ubiquitously expressed E3 ligase substrate receptor and a key player in pharmaceutical targeted protein degradation. Despite substantial insight gained into its chemical ligand space that is exploited in small-molecule protein degraders, its cellular role and native mechanism of substrate recognition remained elusive so far. In this communication, we report the discovery of C-terminal aspartimide and aminoglutarimide residues as natural degron motifs that are recognized by CRBN with high specificity. These C-terminal cyclic imides are known to form in ageing proteins as a result of spontaneous chain breaks after an attack of an asparagine or glutamine side chain amide on the adjacent peptide bond, and thereby mark potentially malfunctional protein fragments. In crystal structures, we uncover that these C-terminal cyclic imides are bound in the same fashion as small-molecule CRBN modulators, and that the residues preceding the cyclic terminus contribute to the interaction with a sequence-unspecific backbone hydrogen bonding pattern with strictly conserved residues in CRBN. We postulate that C-terminal aspartimide and aminoglutarimide residues resulting from chain breaks are largely underappreciated protein damages and represent the native degrons of CRBN.


Assuntos
Imidas , Ubiquitina-Proteína Ligases , Proteólise , Ubiquitina-Proteína Ligases/metabolismo , Ligantes
5.
Chembiochem ; 23(17): e202200255, 2022 09 05.
Artigo em Inglês | MEDLINE | ID: mdl-35776679

RESUMO

Acetyl groups are transferred from acetyl-coenzyme A (Ac-CoA) to protein N-termini and lysine side chains by N-terminal acetyltransferases (NATs) and lysine acetyltransferases (KATs), respectively. Building on lysine-CoA conjugates as KAT probes, we have synthesized peptide probes with CoA conjugated to N-terminal alanine (α-Ala-CoA), proline (α-Pro-CoA) or tri-glutamic acid (α-3Glu-CoA) units for interactome profiling of NAT complexes. The α-Ala-CoA probe enriched the majority of NAT catalytic and auxiliary subunits, while a lysine CoA-conjugate bound only a subset of endogenous KATs. Interactome profiling with the α-Pro-CoA probe showed reduced NAT recruitment in favor of metabolic CoA binding proteins and α-3Glu-CoA steered the interactome towards NAA80 and NatB. These findings agreed with the inherent substrate specificities of the target proteins and showed that N-terminal CoA-conjugated peptides are versatile probes for NAT complex profiling in lysates of physiological and pathological backgrounds.


Assuntos
Lisina Acetiltransferases , Acetilação , Acetiltransferases/química , Coenzima A/metabolismo , Lisina/metabolismo , Lisina Acetiltransferases/metabolismo , Peptídeos/metabolismo , Proteômica
6.
Chem Sci ; 11(34): 9218-9225, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-34123170

RESUMO

Chromatin signaling relies on a plethora of posttranslational modifications (PTM) of the histone proteins which package the long DNA molecules of our cells in reoccurring units of nucleosomes. Determining the biological function and molecular working mechanisms of different patterns of histone PTMs requires access to various chromatin substrates of defined modification status. Traditionally, these are achieved by individual reconstitution of single nucleosomes or arrays of nucleosomes in conjunction with modified histones produced by means of chemical biology. Here, we report an alternative strategy for establishing a library of differentially modified nucleosomes that bypasses the need for many individual syntheses, purification and assembly reactions by installing modified histone tails on ligation-ready, immobilized nucleosomes reconstituted in a single batch. Using the ligation-ready nucleosome strategy with sortase-mediated ligation for histone H3 and intein splicing for histone H2A, we generated libraries of up to 280 individually modified nucleosomes in 96-well plate format. Screening these libraries for the effects of patterns of PTMs onto the recruitment of a well-known chromatin factor, HP1 revealed a previously unknown long-range cross-talk between two modifications. H3S28 phosphorylation enhances recruitment of the HP1 protein to the H3K9 methylated H3-tail only in nucleosomal context. Detailed structural analysis by NMR measurements implies negative charges at position 28 to increase nucleosomal H3-tail dynamics and flexibility. Our work shows that ligation-ready nucleosomes enable unprecedented access to the ample space and complexity of histone modification patterns for the discovery and dissection of chromatin regulatory principles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...